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Two-dimensional solitary and periodic waves in water of finite depth are considered. 
The waves propagate under the combined influence of gravity and surface tension. 
The flow, the surface profile and the phase velocity are functions of the amplitude 
of the wave and the parameters 1 = h / H  and T = T / p g H 2 .  Here h is the wavelength, 
H the depth, T the surface tension, p the density and g the acceleration due to gravity. 
For i > i, large values of 1 and small values of the amplitude, the profile of the wave 
satisfies the Korteweg-de Vries equation approximately. However, for T close to 8 
this equation becomes invalid. I n  the present paper a new equation valid for T close 
to 4j is obtained. Moreover, a numerical scheme based on an integrodifferential- 
equation formulation is derived to solve the problem in the fully nonlinear case. 
Accurate solutions for periodic and solitary waves are presented. The numerical 
results show that the Korteweg-de Vries equation does not provide an accurate 
description of periodic gravity-capillary waves for 7 < +. In addition, it is shown that 
elevation solitary waves cannot be obtained as the continuous limit of periodic waves 
as the wavelength tends to infinity, Graphs of the results are included. 

1. Introduction 
Approximate solutions for gravity solitary and cnoidal waves of small amplitude 

were obtained by Rayleigh (1876) and Korteweg & de Vries (1895). These results were 
derived systemat,ically by Keller (1948), who calculated a first-order perturbation 
solution in powers of the wave amplitude. This work was extended to second order 
by Laitone ( 1960). 

More recently, accurate fully nonlinear solutions for gravity solitary waves were 
obtained by Longuet-Higgins & Fenton (1974), Byatt-Smith & Longuet-Higgins 
(1976), Witting (1975) and Hunter & Vanden-Broeck (1983). A review of some of' these 
theories can be found in Miles (1980). 

Accurate solutions for periodic gravity waves in water of finite depth were obtained 
by Schwartz (1974), Cokelet (1977), Vanden-Broeck & Schwartz (1979) and Rienecker 
& Fenton (1981). The effect of surface tension on periodic waves was investigated 
by Crapper (1957), Harrison (1909), Wilton (1915), Pierson & Fife (1961), Kinnersley 
(1976), Schwartz & Vanden-Broeck (1979), Hogan (1980, 1981) and Chen & Saffman 
(1980). For a review of these calculations see Schwartz & Fenton (1982). 

The effect of surface tension on solitary waves was first considered by Korteweg 
& de Vries (1895). They discovered that depression solitary waves can exist for 



206 J .  K .  Hunter and J . - M .  Vunden-Broeck 

sufficiently large values of the surface tension. A systematic perturbation calculation 
was attempted by Shinbrot (1981). However, his results are partially incorrect 
because he excluded the possibility of depression waves. A first-order perturbation 
solution allowing depression waves was derived by Vanden-Broeck & Shen (1983) and 
Benjamin (1982). 

This perturbation calculation is invalid when 

is close to 5. In  (1.1) T is the surface tension, p is the fluid density, g the gravitational 
acceleration and H is the undisturbed depth of the fluid. 

I n  this paper a perturbation calculation valid near T = + is presented. I n  addition, 
the exact nonlinear equations are solved numerically. 

Accurate solutions for depression solitary waves are obtained. Moreover, it is shown 
that elevation solitary waves cannot be obtained by increasing continuously the 
wavelength of periodic gravity capillary waves. 

I n  $ 2  we formulate the nonlinear problem and briefly review some of the classical 
perturbation calculations. I n  5 3 we describe the perturbation calculation valid for 
T close to 5. I n  $4 we reformulate the problem as an integrodifferential equation on 
the free surface, which allows us to compute solitary and periodic waves of arbitrary 
amplitude. The numerical method is similar in philosophy if not in details to  the 
scheme derived by Vanden-Broeck & Schwartz (1979). The results of the numerical 
computation are discussed in $ 5 .  In  addition, the limiting configuration for large- 
amplitude solitary waves when T > + is found analytically in $ 5 .  

2. Formulation and classical perturbation solutions 
We consider a two-dimensional progressive wave in an irrotational incompressible 

inviscid fluid having a free surface with surface tension acting upon it, and bounded 
below by a flat horizontal bottom. We take a frame of reference in which the flow 
is steady, with the X-axis parallel to the bottom, and with the Y-axis a line of 
symmetry of the wave. The phase velocity C is defined as the average fluid velocity 
a t  any horizontal level completely within the fluid. 

We introduce a potential function @ ( X ,  Y )  and a stream function Y(X, Y ) .  Let the 
stream function assume the values zero and - Q on the free surface and on the bottom 
respectively. The undisturbed fluid depth H is defined by 

H = -  Q 
c 

We take the origin of our coordinate system on the undisturbed level of the free 
surface, so that the bottom is given by Y = - H ,  and we denote the equation of the 
free surface by Y = C(X) .  

I n  order to derive asymptotic solutions it is convenient to introduce the following 
dimensionless variables : 
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In (2.2) L is a lengthscale of the wave in the X direction and A is a measure of the 
amplitude. The exact nonlinear equations for Q, and '1 are 

PQ,xx+$yy = 0 ( - 1  < Y < a'1(4), (2.3) 

& = O  on y = - 1 ,  (2.4) 

ar/,Q,,- -$?J = 0 on Y = ay(4, (2 .5)  
1 

P 

In (2.3)-(2.6) a and /? are the dimensionless parameters 

A H2 

H'  L2 
a = -  p = - .  

Relations (2.3)-(2.6) are the classical water-wave equations. 

dimensionless wavelength 
We seek solutions for periodic water waves of wavelength A ,  and introduce the 

A a= - 
L '  (2.8) 

The Froude number F is defined by 

Solitary waves are the limit of periodic waves as a+ XI. In that case F = B.  
In  order to motivate the considerations presented in the following sections, it  

is worthwhile reviewing briefly some of the classical perturbation solutions of the 
system (2.3)-(2.7). Stokes (1847, 1880) derived a perturbation solution for pure 
gravity waves by assuming a small and /3 of order unity. His results were generalized 
to include the effect of surface tension by Harrison (1909), Wilton (1915) and Nayfeh 
(1970). However, these perturbation calculations become invalid asp-  0 because the 
ratio of successive terms is then unbounded. 

The shallow-water equations are derived by assuming /3 small and a of order unity. 
These equations do not have travelling-wave solutions because the dispersive effects 
are neglected (Whitham 1974, p. 457). The inclusion of dispersive effects into the 
shallow-water theory leads to the Korteweg-de Vries equation. This equation can be 
derived by assuming p small and a of order /3 (Keller 1948; Vanden-Broeck & Shen 
1982). Thus we let 

a = P = E ,  (2.10) 

and expand 7, $ and B as 

\ r/ = y o + E r / 1 + € 2 r / 2 + . . . ,  

I Bx 
9 = -+ 6 $ o + E Q , , + E 2 Q , 2 + . . . ,  

(2.11) 
B = B O + ~ B , + e 2 B 2 +  ..., 

F = Fo+~F,+s2F,+ ... . 
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Then we use (2.10) and (2.11) in (2.3)-(2.6), and find that 
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B o = F o = l ,  

4; = -709 

2F, 7; - 3707/; + (T-  9) 7; = 0. 

(2.12) 

(2.13) 

(2.14) 

The primes in (2.13) and (2.14) denote derivatives with respect to x. The dispersive 
effect arises from the last term in (2.14). 

Korteweg & de Vries (1895) showed that periodic solutions of (2.14) can be found 
in closed form. As the wavelength tends to infinity these waves tend to  the 
solitary-wave solution 

4( 1 - 37) 
a = 2 F 1 ,  b =  [ 3a 1.i (2.15) 

When 7 < 4 these are elevation waves with Froude number greater than unity; when 
7 > $ they are depression waves with Froude number less than unity. 

Equation (2.15) shows that, the slope of the wave profile becomes large near T = f 
and the solution ceases to  exist altogether when T = 8. Thus the Korteweg-de Vries 
equation (2.14) (denoted in the remaining part of the paper as the KdV equation) 
is invalid in the neighbourhood of T = 4. This is due to the fact that the dispersive 
effects disappear as r approaches 4. The validity of KdV for T not close to + will be 
discussed in $5. 

3. Perturbation solution near 7 = 4 
In  this section we shall derive an equation analogous to the RdV equation which 

is valid in a neighbourhood of 7 = &. The coefficient of the dispersive term 7'; in (2.14) 
vanishes a t  7 = 9, making a travelling wave impossible. To obtain a balance between 
the dispersive and nonlinear terms near T = 9 we take 

a = 2 ,  P ' E  (3.1) 

in (2.3)-(2.6). Then we expand q ,  4, B and T as 

7 = 4-k €Tl -k E 2 7 2  + . . . , 
B = Bo+eB,+e2B2+ ..., 

F = Fo+e4+e2F2+ .... 

(3.2) 

Substituting (3.1) and (3.2) into (2.3)-(2.6), we obtain after some algebra 

Fo = Bo = 1 ,  Fl = B, = 0, 4 = B,, (3.3) 

To = -4& (3.4) 

2 & V ~ - 3 7 , 7 ~ + 7 , 7 ~ - & 7 ~ )  = 0. (3.5) 
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Equation (3.5) provides an appropriate generalization of the Korteweg-de Vries 
equation when T is close to f .  

Numerical integration of (3.5) indicates that depression solitary waves exist for 
7 = Q and for values of 7 close to f .  A typical profile is shown in figure 5.  Elevation 
solitary waves will be discussed in $5. 

Periodic solutions of (3.5) can be obtained in the form of an expansion in powers 
of the wave amplitude. 

Therefore we write 
7 0  = a701+a2702+O(a3), (3.6) 

(3.7) 

Here a is a measure of the wave amplitude; its precise meaning will become clear later. 
Next we substitute (3.6) and (3.7) into (3.5) and collect all terms of like powers 

of a. Thus we obtain 

F2 = F2, + a&, + a2&, + O(a3).  

2F,od1+717;1’C1-&&’ = 0, (3.8) 

(3.9) 240  d z  + 71 6 2  - &&’ = 3701 dl - 2F& d 1 -  

The solutions of (3.8) and (3.9) are given by 

qOl = cos K x ,  (3.10) 

T~~ = - 3K[ 167, K2 - 8KF2, -%K5]-l cos 2Kx, (3.11) 

F,, = b1KZ+&K4, (3.12) 

F2, = 0. (3.13) 

Here K = 2n/ais the wavenumber. Relations (3.6) and (3.10) define a as the amplitude 
of the fundamental in the Fourier-series expansion of ?,(x). 

The classical dispersion relation for linear water waves is given by (see Whitham 
1974, p. 403) 

F2 = -tanh h (Fy (1  + ~ y )  2RH 
(3.14) 

From (2.7), (2.8) and (3.1) we have 2nH/h = e427c/r. Substituting this result and (3.2) 
into (3.14), and expanding for small e we find 

F2 = 1 +2F2, e2 

where F20 is given by (3.12). Thus the solution of (3.5) overlaps the classical linear 
solution as the amplitude tends to zero. 

The perturbation solution (3.10)-(3.13) is invalid when 

F20 = 27, K2 + &K4, (3.15) 

because the coefficient of cos2Kx in (3.11) is then unbounded. When (3.15) is satisfied, 
the solution of (3.8) is given by 

T~~ = cos Kx + E2 cos 2Kx,  (3.16) 

4, = K2+&K4 = 271 K2 +&K4. (3.17) 

Here E, is a constant to be found as part of the solution. Substantiating (3.16) into 
(3.9) we obtain 

2F,07&+7,7~2 -&&) = ( 2 4 ,  K-iKE2)sinKx+(4&, KE2-#K)sin2Kn: 

-@3,~in3Kx-3K(E,)~sin4Kx. (3.18) 
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FIGURE 1 .  Values of F2 as a function of for a = 0.01 and K = 1. The solid curves correspond to 
the numerical integration of (3.5), the broken line to the solution (3.12), (3.13) and the two crosses 
to the solutions (3.22). 

The solutions of (3.18) are periodic and bounded if and only if the coefficients of 
sin Kx and sin2Kx in the right-hand side of (3.18) vanish. Thus we have 

E, = f 44, 
21 - - 4  4% F - + + S  1 

Substituting these results into (3.6) and (3.7) we obtain 

(3.19) 

(3.20) 

qo = acosKx fa2-~cos2Kx+O(a2) ,  (3.21) 

F, = + ~ ~ P + & K ~ f 3 ~ 2 - % + 0 ( a ~ ) .  (3.22) 

Relations (3.21) and (3.22) show that two solutions exist when (3.15) is satisfied. 
Similar properties were found by Wilton (1915), Pearson & Fife (1961), Schwartz & 
Vanden-Broeck (1979) and Chen & Saffman (1980) for waves in water of infinite depth, 
and by Nayfeh (1970) for waves of small amplitude in water of moderate depth. It 
is interesting to note that the solutions (4.13) and (4.14) given by Nayfeh (1970) 
converge to (3.21) and (3.22) as the depth tends to  zero. Thus Nayfeh’s solution and 
the present long-wave calculation overlap. 

A non-uniqueness analogous to  the one described by (3.21) and (3.22) will occur 
in general when waves of wavenumber K and nK travel with the same phase velocity, 
i.e. when 

17 2 1  K2 + &K4 = 4n271 K2 + 3-n4K4. 90 (3.23) 

Here n is an arbitrary integer greater than unity. The solution of (3.8) is then 

qo = cos Kx + En cos nKx. (3.24) 

For n = 2, (3.23) and (3.24) reduce to (3.16) and (3.17). 
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Relation (3.23) can be rewritten as 
457, p=-- 
1 +n2 

(3.25) 

It follows from (3.2) and (3.25) that this non-uniqueness can only occur for r < 4. 
Numerical values of F, for a = 0.01 and K = 1 obtained by integrating (3.5) 

numerically are shown in figure 1 .  The broken line corresponds to the solution (3.12), 
(3.13) and the two crosses to the solutions (3.22).  These results indicate that the two 
solutions (3.22) are members of two different families of solutions. 

4. Numerical procedure 
It is convenient to reformulate the problem as an integrodifferential equation by 

considering the complex velocity u - iv. Here u and w are the horizontal and vertical 
components of the velocity respectively. The variables are made dimensionless by 
using H a s  the unit length and C as the unit velocity. We choose the complex potential 

f = $+i$ (4.1) 
as the independent variable and denote by u($) and w($) the horizontal and vertical 
components of the velocity on the free surface $ = 0. 

In  order to find a relation between u and v we apply the method presented by 
Vanden Broeck & Schwartz (1979). Thus we obtain after some algebra 

27t 
1 [zL(s) - 11 [YE- + w(s) sin- (s+ e) 

ds, (4.2) 
211. 

1 
1 + r i -  2ri cos- (s + 0) 

where 70 = exp (-27cH/A) and I = A / H .  The second integral in (4.2) is of Cauchy 
principal-value form. 

The surface condition (2.6) can now be rewritten as 

TW’(0) 
= p [ u ( o ) ] 2  - - u(o) . (4.3) 

In the remaining part of the paper we shall choose coordinates (2 ,  g) with the origin 
a t  a crest or a trough of the wave. The shape of the free surface is then defined 
parametrically by the relations 

2(#) = [ 4 s )  {[u(s)I2 + [v(s)I21-’ ds, (4.4) 
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Finally we impose the periodicity condition 

2(&) = $1. (4.6) 

uo = u(0). (4.7) 

We shall measure the amplitude of the wave by the parameter 

For given values of r ,  uo and 1, (4.2)-(4.7) define a system of integrodifferential 

The equations for solitary waves are obtained by taking the limit 1+ 00 in (4.2). 
equations for u(#) ,  v (#) ,  x(#), y(#) and F. 

This leads after some algebra to 

* (s-8)u(s)+2[u(s)-l] 
( s -  8)2 + 4 

ds 

ds. (4.8) 

Accurate numerical schemes were derived to  solve these integrodifferential equations. 
For a description of a similar numerical procedure see Vanden Broeck & Schwartz 
(1979). 

We shall refer to  the numerical scheme for periodic waves as scheme I and to the 
numerical scheme for solitary waves as scheme 11. 

5.  Discussion of the results 
5.1. Depression solitary waves 

Numerical scheme I1 was used to  compute depression solitary waves for given values 
of r and uo. I n  the first calculation, the Newton iterations were started with the 
asymptotic solution (2.15) as the initial guess. For uo close to unity the iterations 
converged rapidly. Once a solution was obtained it was used as the initial guess for 
the next calculation with a slightly different value of r or uo. The curve (a )  in figure 
2 shows a typical profile for r = 0.7 and uo = 3.0. 

The asymptotic solution (2.15) can be rewritten in terms of the variables used in 
the numerical scheme as 

= A[sechZ[ 4( 1 3A - 37) 12-11.  

F2 = l + A .  (5.2) 

The curve ( b )  in figure 2 corresponds to the profile (5.1) in which the amplitude A 
is equal to the amplitude of the numerical solution. For 1 < uo < 1.03 the numerical 
results and the asymptotic formula (5.1) were found to be indistinguishable to 
graphical accuracy. 

I n  table 1 we compare numerical values of F with the approximation (5.2) for 
various values of uo and r = 0.4, and 0.7. 

As uo increases for a given value of r > &, the wave profile becomes steeper and 
the distance between the trough and the bottom decreases. For r > this distance 
tends to zero as uo + m. The corresponding Froude number tends to  zero and the 
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P t 

FIGURE 2. Free-surface profiles of depression solitary waves for 7 = 0.7. The curve (a) is the exact 
numerical solution for uo = 3.0. The curve (b) corresponds to the KdV approximation (5.1) in which 
A is equal to the amplitude of curve (a) .  The curve ( c )  corresponds to the limiting profile (5.7). 

7 = 0.4 7 = 0.7 

uo Numerical KdV Numerical KdV 

1 .o 
1.03 
1.5 
2.0 
4.0 

10.0 
20.0 
50.0 

100.0 

1 .0 
0.986 
0.844 
0.756 
0.578 
0.396 
0.291 
0.190 
0.136 

1 .o 
0.986 
0.850 
0.764 
0.590 
0.407 
0.301 
0.195 
0.137 

1 .o 
0.986 
0.832 
0.734 
0.541 
0.355 
0.255 
0.163 
0.116 

1 .o 
0.985 
0.831 
0.734 
0.542 
0.355 
0.253 
0.152 
0.081 

TABLE 1. Values of the Froude number for depression aolitary waves for 7 = 0.4 and 7 = 0.7, and 
various values of uo. Numerical values were computed by scheme 11, and the KdV values found 
from (5.2) with A taken equal to the amplitude of the numerical solution. 

profile approaches a static limiting configuration in which gravity is balanced by 
surface tension. Then (2.6) reduces to a differential equation for the free surface: 

7 - T ? I ~ ~ ( ~  +7:)-$ = 1. (5.3) 

r(0)  = 0 ,  (5.4) 

y(C0) = 1. (5 .5 )  

b2+~7(1+?):)-1 = 7+7-$ .  (5.6) 

The boundary conditions for (5.3) are 

Multiplying (5.3) by 7% and integrating with respect to II: yields 
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F (a 1 

1.0 - 

0 I I I I 
0.5 1 .o 1.5 2.0 2 

-0.01 0.02 f 

-0.02 0.01 

FIQURE 3. (a) Computed free surface profile of a depression solitary wave for T = 0.4 and u,, = 227. 
The free surface has just one point of contact with itself and encloses a small bubble a t  the trough. 
(b) The bubble of (a) expanded by a factor of 12.5. The vertical scale is the same as the horizontal 
scale. 

The value of the constant of integration in (5.6) was evaluated by using (5.5). 
Integrating (5.6) gives a formula for the shape of the free surface, namely 

x = s, [72(q+7-+-+?p--2- 1 , y  a dq. (5.7) 

The curve ( c )  in figure 2 represents the profile (5.7) for 7 = 0.7. 
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(a ) 
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0.02 

0.01 
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( C )  
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- 

L I I I I  " ' " " ' *  

0 

0.02 I 1 
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FIQURE 5. Computed free-surface profiles of depression solitary waves for T = 0.316 and u,, = 1.005. 
The solid curve corresponds to the exact numerical solution and the broken curve to the numerical 
integration of (3.5). The value of the Froude number is F = 0.997. 

We denote by t a n g  the slope of the profile (5.7) at the trough x = 0. Then (5.4) 
and (5.6) yield 

1 
27 c o s a = l - - .  (5.8) 

Relation (5 .8)  implies that  the present limiting configuration is only possible for T > +. 
For 7 < 3, the numerical computations indicate that the wave ultimately reaches 

a critical configuration with a trapped bubble a t  the trough. This critical configuration 
is shown in figure 3 for 7 = 0.4. Similar limiting configurations were obtained 
previously by Crapper (1957), Schwartz & Vanden-Broeck (1979) and Vanden-Broeck 
& Keller (1980). Waves for larger values of uo could be obtained by allowing the 
pressure in the trapped bubble to be different from the atmospheric pressure 
(Vanden-Broeck & Keller 1980). 

Numerical scheme I1 was used to compute depression solitary waves for T < 5. I n  
figure 4 we present solutions for u, = 1.03 and various values of 7. As T decreases, the 
profiles develop a large number of inflexion points. We were unable to compute 
solutions for u, = 1.03 and T < 0.21 because too many mesh points were required. 

I n  figure 5 we compare the numerical solution of the exact nonlinear equations with 
the profile obtained by numerically integrating (3.5). We found that the two solutions 
become identical within graphical accuracy in the limit as T + +  and uo+ 1 with the 
ratio (u, - 1) (7 -g)-2 constant. This constitutes an important check on the consistency 
of our results. 

5.2. Periodic waves and elevation solitary waves 
We used numerical scheme I to  compute periodic waves of large wavelength I for T < f. 
A large number of dimples are present on the profiles of these waves (see figure 6). 
We found many different families of periodic waves. This non-uniqueness agrees with 
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-0.03 - 

0 5 10 15 
X 

( b  1 

-0.03 - 

l " " I " " l " ~  

0 5 10 15 
X 

(c 1 

X 

FIGURE 6. (a) Computed free-surface profile of a periodic wave with r = 0.24 and uo = 0.97. The 
wavelength 2 = 32. (b) Same as (a) but  with I = 34. (c) Same as (a) but  with I = 36.6. 
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FIQURE 7. Computed values of the Froude number F versus the wavelength 1 for periodic waves 
with 7 = 0.24 and uo = 0.97. Curve ( a )  corresponds to 14 dimples per wavelength, curve (b) to 15 
dimples and curve (c) to 16 dimples. 

the perturbation calculation of 5 3. Waves in different families are characterized by 
the number of dimples in a wavelength. I n  figure 7 we plot the Froude number versus 
wavelength for 3 such families, when 7 = 0.24. Curve (a)  corresponds to 14 dimples, 
curve ( b )  to 15 dimples and curve ( c )  to 16 dimples. Graphs of representative members 
of each of these families are presented in figure 6. 

do not agree with the solutions of the Korteweg-de 
Vries equation (2.14). The KdV equation predicts a unique family of ‘cnoidal ’ waves 
without dimples, whereas the numerical computations predict many different families 
of solutions with a large number of dimples. This is due to the fact that  the lengthscale 
of the dimples was not taken into account in the derivation of KdV. Therefore KdV 
is not valid for 0 < r < +. 

Figure 7 indicates that  for each family of periodic solutions there exists a maximum 
value of the wavelength beyond which solutions cease to exist. Therefore no elevation 
solitary waves are obtained by increasing continuously the wavelength of periodic 
gravity-capillary waves. This result does not imply the non-existence of elevation 
solitary waves. However, i t  shows that, if elevation solitary waves exist, they are not 
the limit of periodic waves. 

Our numerical results for T < 

This research was sponsored by the United States Army under Contract DAAG29- 
80-C-0041. This material is based upon work supported by the National Science 
Foundation under Grant MCS-7927062, Mod. 1 ,  and MCS-8001960. 
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